## 460-2 International Economics

Lecture notes 3: Boom and bust with nominal wage rigidities

- Based on Schmitt-Grohe and Uribe (2013)
- Preferences

$$
\mathrm{E}\left[\sum \beta^{t} U\left(c_{t}\right)\right]
$$

- Tradable and non-tradable goods

$$
c_{t}=\left(c_{t}^{T}\right)^{\omega}\left(c_{t}^{N}\right)^{1-\omega}
$$

- Endowment of tradables

$$
y_{t}^{T}
$$

and production of non-tradables

$$
y_{t}^{N}=f\left(h_{t}\right)=h_{t}^{\alpha}
$$

- Inelastic supply of hours $\bar{h}$

$$
h_{t} \leq \bar{h}
$$

- We allow for unemployment $h_{t}<\bar{h}$ (see below)
- Budget constraint

$$
P_{t}^{T} c_{t}^{T}+P_{t}^{N} c_{t}^{N}+\left(1+r_{t-1}\right) E_{t} d_{t}=P_{t}^{T} y_{t}^{T}+W_{t} h_{t}+\Phi_{t}+E_{t} d_{t+1}
$$

- $E_{t}$ nominal exchange rate, $P_{t}^{T}$ and $P_{t}^{N}$ nominal prices
- Price of tradables pinned down at world price (normalized to 1 ) so

$$
P_{t}^{T}=E_{t}
$$

- Relative price of non-tradables

$$
p_{t} \equiv \frac{P_{t}^{N}}{P_{t}^{T}}=\frac{P_{t}^{N}}{E_{t}}
$$

- Demand for non-tradables

$$
\frac{c_{t}^{T}}{c_{t}^{N}}=\frac{P_{t}^{T}}{P_{t}^{N}}=p_{t}
$$

- Firms

$$
\Phi_{t}=\max _{h_{t}} P_{t}^{N} f\left(h_{t}\right)-W_{t} h_{t}
$$

- Optimality

$$
\frac{W_{t}}{P_{t}^{N}}=f^{\prime}\left(h_{t}\right)=f^{\prime}\left(f^{-1}\left(y_{t}^{N}\right)\right)
$$

which can be rewritten as

$$
p_{t}=\frac{W_{t} / E_{t}}{f^{\prime}\left(f^{-1}\left(y_{t}^{N}\right)\right)}
$$

- Fixing values of $c_{t}^{T}$ and $W_{t} / E_{t}$ we can plot demand and supply of NT and find equilibrium value where

$$
c_{t}^{N}=y_{t}^{N}
$$

- Downward nominal wage rigidity:
- if demand=supply at a $y^{N}$ such that $f^{-1}\left(y^{N}\right)<\bar{h}$ then $h_{t}=f^{-1}\left(y^{N}\right)$ and wages remain at $W_{t}=W_{t-1}$
- otherwise, wages increase up to the point where $f^{-1}\left(y^{N}\right)=\bar{h}$
- Assume pegged exchange rate
- Assume $U(c)=\log (c)$
- Then

$$
\frac{1}{c_{t}^{T}}=\left(1+r_{t}\right) \beta \mathrm{E}_{t} \frac{1}{c_{t+1}^{T}}
$$

- Temporary interest rate shock at 0
- Consumption

$$
\begin{aligned}
c_{0}^{T} & =y^{T}+d \\
c_{t}^{T} & =y^{T}-r \frac{1+r_{0}}{1+r} d \text { for } t=1,2, \ldots
\end{aligned}
$$

Value of $d$ determined by

$$
\frac{1}{y^{T}+d}=\beta\left(1+r_{0}\right) \frac{1}{y^{T}-r \frac{1+r_{0}}{1+r} d}
$$

- Social margins
- Maximize

$$
\sum \beta^{t} U\left(c_{t}\right)
$$

- Subject to

$$
\frac{W_{t}}{f^{\prime}\left(f^{-1}\left(c_{t}^{N}\right)\right)}=\frac{c_{t}^{T}}{c_{t}^{N}}
$$

and either

$$
W_{t}=W_{t-1}
$$

and

$$
f^{-1}\left(c_{t}^{N}\right) \leq 1
$$

or

$$
\begin{gathered}
f^{-1}\left(c_{t}^{N}\right)=1 \\
W_{t} \geq W_{t-1}
\end{gathered}
$$

- Value function depends on state variables $W_{t-1}$ and $d_{t}$
- Any time $c_{t}^{T}<c_{t-1}^{T}$ we have wage rigidity binding
- Optimality condition
- Higher $W_{0}$ has no effect on allocation at date 0 , but tighten constraint at all future periods
- Reducing $d$ reduces $W_{0}$, increases $c_{t}^{N}$ for $t=1,2, \ldots$
- So condition is

$$
\frac{\omega}{c_{0}^{T}}-\beta\left(1+r_{0}\right) \frac{\omega}{c^{T}}-\frac{\beta}{1-\beta} \frac{1-\omega}{c^{N}} \frac{d c^{N}}{d d}
$$

- Deriving the last derivative

$$
\begin{gathered}
\frac{W_{0}}{f^{\prime}(\bar{h})}=\frac{c_{0}^{T}}{f(\bar{h})} \\
\frac{W_{0}}{f^{\prime}(h)}=\frac{c^{T}}{f(h)} \\
\frac{c_{0}^{T}}{c^{T}}=\frac{f(\bar{h}) / f^{\prime}(\bar{h})}{f(h) / f^{\prime}(h)}
\end{gathered}
$$

with Cobb-Douglas

$$
\frac{c_{0}^{T}}{c^{T}}=\frac{\bar{h}}{h}
$$

